首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   6篇
  国内免费   11篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   8篇
  2012年   3篇
  2011年   4篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   5篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1982年   7篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
排序方式: 共有166条查询结果,搜索用时 46 毫秒
1.
Summary Mitochondrial DNA has been isolated from paired lines of pearl millet maintainer and cytoplasmic male sterile plants. Evaluation of the DNA by agarose gel electrophoresis shows that good quality DNA of high molecular weight can be obtained from mitochondria of both maintainer and male sterile pearl millet.  相似文献   
2.
Abstract The capacity to synthesize heat shock proteins (HSPs) during seed germination of sorghum (Sorghum bicolor) and pearl millet (Pennisetum americanum) has been examined. HSP synthesis is detectable in a thermotolerant genotype of sorghum during the first hour of imbibition of the seed under high temperature stress. A non-coordinate control of HSP synthesis during germination was revealed. Genotypic differences were manifest in the stage of germination at which the ability to synthesize HSPs was first apparent and this related to the thermosensitivity of that genotype.  相似文献   
3.
Summary Regression analysis was computed on the grain yield of 15 single cross F1 hybrids of pearl millet (Pennisetum typhoides (Burm.) S. & H.) evaluated in 20 environments at 19 sites in India to assess the nature of genotype X environment interactions. Linear, quadratic, cubic, twoand three-intersecting straight line models were examined for fit. The interactions of six hybrids viz. MH 110, MH 113, MH 114, MH 115, MH 120 and MBH 110 were explained by the linear regression model. The response of the remaining nine hybrids was largely non-linear. The two and three-intersecting straight line models fit better than the quadratic and cubic models and explained non-linearity of response. The two-intersecting straight line models fit for 6 hybrids MH 106, MH 107, MH 112, MH 116, MH 117 and BJ 104. The response of MH 109 was best explained by a three-intersecting straight line model, but there still existed a significant remainder variation. The truncation of environmental range by assuming moving division points was more efficient than the fixed division points for the segmental regression models. The stability of hybrid varieties on the best fitting model has been discussed.  相似文献   
4.
Molecular responses of plants to an increased incidence of heat shock   总被引:9,自引:0,他引:9  
Abstract. Climatic change as a result of the greenhouse effect is widely predicted to increase mean temperatures globally and, in turn, increase the frequency with which plants are exposed to heat shock conditions, particularly in the semi-arid tropics. The consequences of extreme high-temperature treatments on plants have been considered, particularly in relation to the synthesis of heat shock proteins (HSPs) and the capacity to acquire thermotolerance. The heat shock response is described using results obtained with seedlings of the tropical cereals, sorghum ( Sorghum bicolor ) and pearl millet ( Pennisetum glaucum ). A gradual temperature increase, as would occur in the field, is sufficient to induce thermotolerance. The synthesis of HSPs is a transient phenomenon and ceases once the stress is released. Despite the persistence of the HSPs themselves, de novo synthesis of HSPs is required for the induction of thermotolerance each time high temperatures are encountered. The effect of a repeated, diurnal heat shock was investigated and genotypic differences found in the ability to induce the heat shock response repeatedly.  相似文献   
5.
The genomic evolution of triploid plants with regular bivalent formation is discussed. The conclusion is reached that although all the progeny of an originally triploid individual will be triploid numerically, only part of the progeny will be triploid genomically. The consequences of this for triploid identification by means of chromosome morphology and isozyme numbers is discussed.  相似文献   
6.
Summary Germ plasm from the A-genome of Pennisetum purpureum Schum. (AABB) of the secondary gene pool was transferred to cultivated pearl millet (AA) [P. glaucum (L.) R. Br.] by pollinating cytoplasmicnuclear male-sterile (cms) pearl millet with fertile allohexaploid pearl millet x P. purpureum hybrids (AAAABB). Certain allohexaploids used as pollinators on cms pearl millet resulted in 14-chromosome diploid pearl millet progenies. Three types of diploid pearl millet plants were produced in addition to the expected 28-chromosome AAAB-genome plants: (1) cms plants with only the A-genome, (2) cms plants with the A- and A-genomes, and (3) fertile plants with the A- and A-genomes. The latter group has allowed the utilization of genes for fertility restoration, stiff stalk, maturity, height, and morphological characteristics from the A-genome of P. purpureum in the pearl millet breeding program. Production of monoploid gametes by the allohexaploids appeared to be genetically controlled.  相似文献   
7.
8.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   
9.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   
10.
The ultrastructure, morphology, and histology of somatic embryogenesis in pearl millet (Pennisetum glaucum) were examined using light and electron microscopic techniques. Somatic embryogenesis was initiated from zygotic embryo explants cultured 8 d after pollination. Formation of a ridge of tissue began 3–4 d after culture (DAC) by divisions in the epidermal and subepidermal cells of the scutellum. Ridge formation was accompanied by a decrease in vacuoles, lipid bodies, and cell size, and an increase in endoplasmic reticulum (ER). Proembryonic cell masses (proembryoids) formed from the scutellar ridge by 10 DAC. Proembryoid cells had abundant Golgi bodies and ER while the amounts of lipids and starch varied. Somatic embryos developed from the proembryonic masses 13 DAC and by 21 DAC had all the parts of mature zygotic embryos. Although shoot and root primordia of somatic embryos were always less differentiated than those of zygotic embryos, scutellar cells of somatic and zygotic embryos had similar amounts of lipids, vacuoles, and starch. Somatic scutellar epidermal cells were more vacuolated than their zygotic counterparts. In contrast, somatic scutellar nodal cells were smaller and not as vacuolated as in zygotic embryos. Somatic embryogenesis was characterized by three phases of cell development: first, scutellar cell dedifferentiation with a reduction in lipids and cell and vacuole size; second, proembryoid formation with high levels of ER; and third, the development of somatic embryos that were functionally and morphologically similar to zygotic embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号